Searching subsequences

نویسندگان

چکیده

منابع مشابه

Searching for Ephemeral Subsequences in Strings

Let T = u, ... Un be a text where every symbol Uj has a time slamp t, and a duration d(ai) a.s.sociatcd with it. The time stamps of the ai's are increasing, so that j > i implies tj > li. A text. symbol OJ is alive. at time tiff tj :S t:S t; + d(u;). A subsequence ai, ... OJ ... of T is alive iff every Gi k is alive at time tim.' that is. ti k + d(ai.) ~ tim for all k E {I, ... I m I}. We consi...

متن کامل

Heapable Sequences and Subsequences

Let us call a sequence of numbers heapable if they can be sequentially inserted to form a binary tree with the heap property, where each insertion subsequent to the first occurs at a previously placed number. In this paper we consider a variety of problems related to heapable sequences and subsequences that do not appear to have been studied previously. Our motivation for introducing these conc...

متن کامل

All Common Subsequences

Time series data abounds in real world problems. Measuring the similarity of time series is a key to solving these problems. One state of the art measure is the longest common subsequence. This measure advocates using the length of the longest common subsequence as an indication of similarity between sequences, but ignores information contained in the second, third, ..., longest subsequences. I...

متن کامل

Longest Common Subsequences

The length of a longest common subsequence (LLCS) of two or more strings is a useful measure of their similarity. The LLCS of a pair of strings is related to thèedit distance', or number of mu-tations/errors/editing steps required in passing from one string to the other. In this talk, we explore some of the combinatorial properties of the sub-and super-sequence relations, survey various algorit...

متن کامل

Longest subsequences in permutations

For a class of permutations X the LXS problem is to identify in a given permutation σ of length n its longest subsequence that is isomorphic to a permutation of X . In general LXS is NP-hard. A general construction that produces polynomial time algorithms for many classes X is given. More efficient algorithms are given when X is defined by avoiding some set of permutations of length 3.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 1991

ISSN: 0304-3975

DOI: 10.1016/0304-3975(91)90358-9